Publications

Google Scholar

Since starting at UCLA

W. E. Meador, E. Y. Lin, I. Lim, H. C. Friedman, D. Ndaleh, A. K. Shaik, N. I. Hammer, B. Yang, J. R. Caram, E. M. Sletten, J. H. Delcamp “Silicon-RosIndolizine fluorophores with shortwave infrared absorption and emission profiles enable in vivo fluorescence imagingNat. Chem. (2024).

A. V. Sica, A. S. Hua, B. Coffey, K. P. Anderson, B. T. Nguyen, A. M. Spokoyny, J. R. CaramMeasuring the Total Photon Economy of Molecular Species through Fluorescent Optical Cycling (FOC)” Submitted. Preprint. Chem Rxiv. DOI: 10.26434/chemrxiv-2024-gkjgv (2024).

P. Ramos, H. Friedman, B. Y. Li, C. Garcia, E. Sletten, J. R. Caram, S. J. Jang “Nonadiabatic derivative couplings through multiple Franck-Condon modes dictate the energy gap law for near and short-wave infrared dye moleculesJ. Phys. Chem. Lett. 2024, 15, 1802–1810.

D. Ndaleh, W. E. Meador, C. Smith, H. C. Friedman, M. McGuire, J. R. Caram, N. I. Hammer, J. H. Delcamp “Near-infrared Emissive Indolizine Squaraine Fluorophores as Strong Molecular Viscosity SensorsChemPhotoChem, 2024, e202300212.

A. P. Deshmukh, W. Zheng, C. Chuang, A. D. Bailey, J. A. Williams, E. M. Sletten, E. H. Egelman, J. R. CaramNear-Atomic Resolution Structure of J-aggregated Helical Light Harvesting NanotubesNat. Chem. (2024).

Summary – Here, we obtain a 3.3 Å resolution structure of light-harvesting nanotubes derived from an amphiphilic cyanine dye (C8S3-Cl). The brick layer arrangement observed revises the previously hypothesized herringbone arrangement. This work shows how independently obtained native-state structures will enable accurate understanding of (excitonic) structure–function properties. Read more from the author here.

G. Zhu, G. Lao, C. E. Dickerson, J. R. Caram, W. C. Campbell, A. N. Alexandrova, E. R. Hudson “Extending the large molecule limit: The role of Fermi resonance in developing a quantum functional groupJ. Phys. Chem. Lett. 2024, 15, 2, 590–597.

H. Janeková, H. C. Friedman, M. Russo, T. Ahmed, M. Zyberaj, A. S. Hua, A. V. Sica, J. R. Caram, P. Stacko “Deuteration of Heptamethine Cyanine Dyes Leads to Enhanced Emission EfficacyChem. Commun., 2024, 60, 1000.

B. Y. Li, C. E. Dickerson, A. J. Shin, C. Zhao, Y. Shen, Y. He, P. L. Diaconescu, A. N. Alexandrova, J. R. Caram Elucidating Ultranarrow 2F7/2 to 2F5/2 Absorption in Ytterbium(III) Complexes” Submitted. Preprint. ChemRxiv. DOI: 10.26434/chemrxiv-2023-v1nqv (2023).

J. R. Casey, K. Supriya, S. Shaked, J. R. Caram, A. Russell, A. J. Courey “Participation in a High-Structure General Chemistry Course Increases Student Sense of Belonging and Persistence to Organic ChemistryJ. Chem. Educ., 100, 2860−2872 (2023).

N. C. Bradbury, R. F. Ribeiro, J. R. Caram, D. Neuhauser “Polaritons in Large Stochastic Simulations of 2D Molecular Aggregates” Submitted. Preprint. arXiv:2308.04385v2 (2023).

S. M. Tenney , L. A. Tan , X. Tan , M. L. Sonnleitner , B. Coffey , J. A. Williams , R. Ronquillo , T. L. Atallah , T. Ahmed, J. R. CaramEfficient 2D to 0D Energy Transfer in HgTe Nanoplatelet-Quantum Dot Heterostructures through High-Speed Exciton DiffusionJ. Phys. Chem. Lett., 14, 9456–9463 (2023).

N. Ennest, etl al. “De novo design of energy transfer proteins housing excitonically coupled chlorophyll special pairs” Submitted. Preprint. Res. Sq. DOI: 10.21203/rs.3.rs-2736786/v1 (2023).

X. Tan, J. R. CaramOn the inadequacy of Stern-Volmer and FRET in describing quenching in binary donor-acceptor solutions”  J. Chem. Phys. 158, 20, 204705 (2023).

A. D. Bailey, A. P. Deshmukh, N.C. Bradbury, M. Pengshung, T. L. Atallah, J. A. Williams, U. Barotov, D. Neuhauser, E. M. Sletten, J. R. CaramExploring the design of superradiant J-Aggregates from amphiphilic monomer unitsNanoscale, 15, 3841-3849 (2023).

X. Guan, S. Erşan, X. Hu, T. L. Atallah, Y. Xie, S. Lu, B. Cao, J. Sun, K. Wu, Y. Huang, X. Duan, J. R. Caram, Y. Yu, J. O. Park, C. Liu “Maximizing light-driven CO2 and N2 fixation efficiency in quantum dot–bacteria hybridsNat. Cat. 5, 1019–1029 (2022).

A. Sica, A. S. Hua, H. H. Lin, E. M. Sletten, T. L. Atallah, J. R. CaramSpectrally-selective Time-resolved Emission through Fourier-filtering (STEF)J. Phys. Chem. Lett., 14, 552−558 (2023).

A. J. Shin, C. Zhao, Y. Shen, C. E. Dickerson, B. Li, D. Bím, T. L. Atallah, P. H. Oyala, L. K. Alson, A. N. Alexandrova, P. L. Diaconescu, W. C. Campbell, J. R. CaramToward liquid cell quantum sensing: Ytterbium complexes with ultra-narrow absorption” Submitted. Preprint. ChemRxiv. DOI: 10.26434/chemrxiv-2022-vg4jr (2022).

G. Lao, G. Zhu, C. E. Dickerson, B. L. Augenbraun, A. N. Alexandrova, J. R. Caram, E. R. Hudson, W. C. Campbell “Laser Spectroscopy of Aromatic Molecules with Optical Cycling Centers: Strontium(I) PhenoxidesJ. Phys. Chem. Lett., 13, 47, 11029–11035 (2022).

D. Mitra, Z. D. Lasner, G. Z. Zhu, C. E. Dickerson, B. L. Augenbraun, A. D. Bailey, A. N. Alexandrova, W. C. Campbell, J. R. Caram, E. R. Hudson, J. M. Doyle “Pathway Towards Optical Cycling and Laser Cooling of Functionalized ArenesJ. Phys. Chem. Lett., 13, 30, 7029–7035 (2022).

G. Z. Zhu, D. Mitra, B. L. Augenbraun, C. E. Dickerson, M. J. Frim, G. Lao, Z. D. Lasner, A. N. Alexandrova, W. C. Campbell, J. R. Caram, J. M. Doyle, E. R. Hudson “Functionalizing aromatic compounds with optical cycling centers”  Nat. Chem. (2022).

N. C. Bradbury, M. Nguyen, J. R. Caram, and D. Neuhauser “Bethe-Salpeter equation spectra for very large systemsJ. Chem. Phys. 157, 031104 (2022).

S. M. Tenney, L. A. Tan, M. L. Sonnleitner, A. V. Sica, A. J. Shin, R. Ronquillo, T. Ahmed, T. L Atallah, J. R. CaramMesoscale Quantum-Confined Semiconductor Nanoplatelets through Seeded GrowthChem. Mater. 34 (13), 6048-6056 (2022).

Summary – We demonstrate the preparation of mesoscale semiconductor (II–VI) nanoplatelets (NPLs) for the first time using colloidal seeded growth. These nanoplatelets are quantum-confined and atomically precise but grown to a length scale compatible with conventional optical imaging and microscopic manipulation (even reaching >1 μm2) offering an opportunity to bridge the application space between nanocrystals and two-dimensional (2D) materials. 

A. P. DeshmukhN. GeueN. C. BradburyT. L. AtallahC. ChuangM. Pengshung, J. CaoE. M. Sletten, D. Neuhauser, J. R. CaramBridging the gap between H- and J-aggregates: Classification and supramolecular tunability for excitonic band structures in two-dimensional molecular aggregatesChem. Phys. Rev. 3, 021401 (2022).

S. Doria, M. Di Donato, R. Borrelli, M. F. Gelin, J. R. Caram, M. Pagliai, P. Foggi, A. Lapini “Vibronic coherences in light harvesting nanotubes: unravelling the role of dark states J. Mater. Chem. C, 10, 7216-7226 (2022).

K. P. Anderson, A. S. Hua, J. B. Plumley, A. D. Ready, A. L. Rheingold, T. L. Peng, P. I. Djurovich, C. Kerestes, N. A. Snyder, A. Andrews, J. R. Caram, A. M. Spokoyny “Benchmarking the dynamic luminescent properties and UV stability of B18H22-based materialsDalton Trans., 51, 9223-9228 (2022).

C. D. Aiello, J. M. Abendroth, M. Abbas, A. Afanasev, S. Agarwal, A. S. Banerjee, D. N. Beratan, J. N. Belling, B. Berche, A. Botana, J. R. Caram, et al. “A Chirality-Based Quantum LeapACS Nano (2022).

H. C. Friedman, E. D. Cosco, T. L. Atallah, S. Jia, E. M. Sletten, J. R. CaramEstablishing Design Principles for Emissive Organic SWIR Chromophores from Energy Gap LawsChem 7, 1-18 (2021).

Summary – Using experiment and theory, we formulate an energy gap master equation to explain the low quantum yields of organic chromophores with energy gaps in the SWIR. We also create an energy-gap-independent improvement factor, to determine the impact of synthetic modifications on parameters contributing to the quantum yield. We show that rational design changes based off EQME improved quantum yields.

P. Chen, T. L. Atallah, Z. Lin, P. Wang, S. Lee, J. Xu, Z. Huang, X. Duan, Y. Ping, Y. Huang, J. R. Caram, X. Duan “Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodesNature 599, 404–410 (2021).

E. D. Cosco, B. A. Arús, A. L. Spearman, T. L. Atallah, I. Lim, O. S. Leland, J. R. Caram, T. S. Bischof, O. T. Bruns, Ellen M. Sletten “Bright Chromenylium Polymethine Dyes Enable Fast, Four-Color In Vivo Imaging with Shortwave Infrared DetectionJ. Am. Chem. Soc. 143, 18, 6836–6846 (2021).

C. E. Dickerson, H. Guo, G.-Z. Zhu, E. R. Hudson, J. R. Caram, W. C. Campbell, A. N. Alexandrova “Optical Cycling Functionalization of ArenesJ. Phys. Chem. Lett. 12 (16), 3989–3995 (2021).

A. J. Shin,  A. A. Hossain, S. M. Tenney, X. Tan, L. A. Tan, J. Foley, T. L. Atallah, J. R. CaramDielectric Screening Modulates Semicondcutor Nanoplatelet ExcitonsJ. Phys. Chem. Lett. 12 (20), 4958–4964 (2021).

Summary – In this work, the exciton binding energy of cadmium telluride and mercury chalcogenide nanoplatelets (NPLs) are reported for the first time, using the 3D Elliott formula to model low-resolution, high-throughput absorbance spectra. The effect of the external dielectric is also explored through an analytical model, which shows good agreement to our and previously reported values for CdSe NPL excitons– suggesting surface modification as a potential method to modulate photophysics and device properties.

Y. Wang, C. Jia, Z. Fan, Z. Lin, S.-J. Lee, T. L. Atallah, J. R. Caram, Y. Huang, X. Duan “Large-Area Synthesis and Patterning of All-Inorganic Lead Halide Perovskite Thin Films and Heterostructures Nano. Lett. 21 (3), 1454–1460 (2021).

C. D. Aiello, D. D. Awschalom, H. Bernien, T. Brower-Thomas, K. R. Brown, T. A. Brun, J. R. Caram, E. Chitambar, R. D. Felice, M. F. J. Fox et al. “Achieving a quantum smart workforceQuantum Sci. Technol., 6, 030501 (2021).

C. E. Dickerson, H. Guo, A. J. Shin, B. L. Augenbraun, J. R. Caram, W. C. Campbell, A. N. Alexandrova “Franck-Condon tuning of optical cycling centers by organic functionalizationPhys. Rev. Lett. 126, 123002 (2021).

N. C .Bradbury, C. Chuang, A. P. Deshmukh, E. Rabani, R. Baer, J. R. Caram, D. Neuhauser “Stochastically Realized Observables for Excitonic Molecular AggregatesJ. Phys. Chem. A, 124 (49), 10111-10120 (2020).

H. Guo, C. E. Dickerson, A. Shin, C. Zhao, T. Atallah, J. R. Caram, W. C. Campbell, A. N. Alexandrova “Surface Chemical Trapping of Optical Cycling CentersPhys. Chem. Chem. Phys. 23, 211-218 (2021).

A. P. Deshmukh, A. D.Bailey, L. S. Forte, X. Shen, N. Geue, E. M. Sletten, J. R. CaramThermodynamic Control over Molecular Aggregate Assembly Enables Tunable Excitonic Properties across the Visible and Near-InfraredJ. Phys. Chem. Lett., 11 (19), 8026–8033 (2020).

Summary – We model the thermodynamic landscape that governs the self-assembly of cyanine dyes, providing a general approach to selectively make extended 2-dimensional J-aggregates. We show the universality of this approach by making J-aggregates of several sheet forming cyanine dyes with absorption tunability from visible through shortwave infrared.

M. Pengshung, P. Neal, T. L. Atallah, J. Kwon, J. R. Caram, S. A. Lopez, E. M. Sletten “Silicon incorporation in polymethine dyesChem. Commun., 56, 6110-6113 (2020).

S. M. Tenney, V. Vilchez, M. L. Sonnleitner, C. Huang, H. C. Friedman, A. J. Shin, T. L. Atallah, A. P. Deshmukh, S. Ithurria, J. R. CaramMercury Chalcogenide Nanoplatelet-Quantum Dot Heterostructures as a New Class of Continuously Tunable Bright Shortwave Infrared EmittersJ. Phys. Chem. Lett., 11 (9), 3473–3480 (2020)

undefined

Summary – We make two dimensional mercury chalcogenide nanoplatelets and induce room temperature growth of quantum dots on their surfaces through a ligand exchange procedure and control over excess QD precursors. Energy transfer from platelet to dot produces tunable SWIR emission with high quantum yields and fast radiative lifetimes.

K. P. Anderson, M. A. Waddington, G. J. Balaich, J. M. Stauber, J. R. Caram, P. I. Djurovich, A. M Spokoyny. “A molecular boron cluster-based chromophore with dual emissionDalton Trans., 49, 16245-16251 (2020).

C. Chuang, D. I. G. Bennet, J.R. Caram, A. Aspuru-Guzik, M. G. Bawendi, J. Cao “Generalized Kasha’s Model: T-Dependent Spectroscopy Reveals Short-Range Structures of 2D Excitonic SystemsChem 5 (12), 3135-3150 (2019). Contact the PI for a PDF copy. (Also available on Arxiv: arxiv.org/abs/1901.01318)

A preview of this paper by T. L. C. Jansen: “Unraveling Molecular Packing in Two-Dimensional Excitonic Systems” Chem 5 (12), pp 3010-3012 (2019)

T. Atallah, A. Sica, A. Shin, H. Friedman J.R. Caram. “Decay Associated Fourier Spectroscopy: Visible to Shortwave Infrared Time-Resolved Photoluminescence Spectra J. Phys. Chem. A 123 (31), 6792-6798 (2019)

Quick Summary-Check out our paper on Decay Associate Fourier Spectroscopy (DAFS) technique developed in the #CaramLab. Our DAFS method uses a Mach-Zehnder interferometer to record spectrally and temporally resolved photoluminescence in the Fourier domain (like FT-IR), allowing the setup to resolve weak emission signals from the background, even if system is fluctuating. Employing silicon avalanche photodiodes and superconducting nanowires in concert we achieve single photon sensitivity from the shortwave infrared (SWIR, 2 μm) through visible (400 nm) wavelengths. Our paper using two Förster resonance energy transfer pairs to show the efficacy of the DAFS. What will the #CaramLab do next with DAFS?.

abstractimagelocaliz

A. Deshmukh, D. Koppel, C. Chuang, D. Cadena, J. Cao, J.R. Caram. “Design Principles for Two-Dimensional Molecular Aggregates Using Kasha’s Model: Tunable Photophysics in Near and Short-Wave InfraredJ. Phys. Chem. C 123 (30), 18702-18710 (2019)

Quick Summary– We make molecular aggregates with strong SWIR absorption and show that we can chemically control their photphysics by changing the supramolecular arrangement of the chromophores within the aggregate. We also find a new aggregate type called as ‘I-aggregate’ which has combined features of the well-known H- and J-aggregates.

abstractimagelocaliz

S.N. Bertram , B. Spokoyny, D. Franke, J. R. Caram, J.J. Yoo, R.P. Murphy, M.E. Grein, M.G. Bawendi. “Single Nanocrystal Spectroscopy of Shortwave Infrared Emitters”  ACS Nano, 13 (2), 1042-1049 (2019)

S. Doria, A. Lapini, M. D. Donato, R. Righini, N. Azzaroli, A Iagatti, J. R. Caram, T.S. Sinclair, L. Cupellini, S. Juronovich, B. Menucci, G. Zanotti, A.M. Paoletti, G. Pennesi, P. Foggi. ”Understanding the influence of disorder on the exciton dynamics and energy transfer in Zn-phthalocyanine H-aggregatesPhys.Chem. Chem. Phys., 20, 22331-22341 (2018)

K. E. Shulenberger, T. S. Bischof, J. R. Caram, H. Utzat, I. Coropceanu, L. Nienhaus, M. G. Bawendi.  ”Multiexciton Lifetimes Reveal Triexciton Emission Pathway in CdSe NanocrystalsNano Lett, 18 (8), 5153-5158 (2018)

S. Doria, T. S. Sinclair, N. D. Klein, D. I. G. Bennett, C. Chuang, F. S. Freyria, C. P. Steiner, P. Foggi, K. A. Nelson, J. Cao, A. Aspuru-Guzik, S. Lloyd, J. R. Caram,* M. G. Bawendi. “Photochemical Control of Exciton Superradiance in Light-Harvesting Nanotubes” ACS Nano,12 (5), 4556–4564 (2018). *Corresponding Author (2018)

Quick Summary– In this work we show that intense illumination actually changes the disorder and connectivity in a molecular aggregate, modulating exciton delocalization and superradiance. This shows that we can achieve chemical control over coherence in transition dipole moments.

abstractimagelocaliz

J. A. Carr, D. Franke, J. R. Caram, C. F. Perkinson, V. Askoxylakis, M. Datta, D. Fukumura, R. K. Jain, M. G. Bawendi, O. T. Bruns. “Shortwave Infrared Fluorescence Imaging with the Clinically Approved Near-Infrared Dye Indocyanine green” Proc. Natl. Acad. Sci.,  (2018)

B.S. Rolczynski, H. Zheng, V. P. Singh, P. Navotnaya, A. R. Ginzburg, J. R. Caram, K. Ashraf, A. T. Gardiner, S.-H. Yeh, S. Kais, R. J. Cogdell, G. S. Engel. Correlated Protein Environments Drive Quantum Coherence Lifetimes in Photosynthetic Pigment-Protein Complexes, Chem, 4, 1,  pp. 138-149, 11 (2018)

F. S. Freyria J. M. Cordero, J. R. Caram, S. Doria, A. Dodin, Y. Chen, A. P. Willard, and M. G. Bawendi, “Near-Infrared Quantum Dot Emission Enhanced by Stabilized Self-Assembled J-Aggregate Antennas” Nano Lett.,  17 (12), pp. 7665–7674 (2017)

E.M. Cosco, J. R. Caram O. T. Bruns, E. P. Farr, M. G. Bawendi, E. M. Sletten, ”Flavylium polymethine fluorophores are bright near- and shortwave infrared emitters.” Angewandte Chemie,129 (42), pp. 13306-13309

nature24755-f1

Paper Feature- Dr. Martin Schnerman profiled our work on SWIR emitting chromophores in Nature.

Postdoctoral Work

J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. G. Bawendi ,”PbS Nanocrystal Emission is Governed by Multiple Emissive States.” Nano Lett., 16 (10), pp 6070–6077 (2017)

pbspaper

Quick Summary-PbS NCs show both “trap” and band-edge emissive character at room temperature.  Combining photon correlation Fourier spectroscopy with temperature dependent time resolved and static emission spectroscopy we build a model which demonstrates that these two states slowly interchange upon excitation over a kinetic barrier.  This can help explain trends in QD emission energy, quantum yield, and linewidth as a function of size and temperature.

J. R. Caram, S. Doria, D. M. Eisele, T. Sinclair, S. Lloyd, M. G. Bawendi, “Room Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular-Aggregate.” Nano Lett., 16 (11), pp 6808–6815 (2016)

jagg

Quick Summary– Light harvesting nanotubes are self-assembled J-Aggregates which have extended delocalized excitons.  We show that we can stabilize these aggregates to photodamage in a sugar based-matrix.  This has enabled detailed cryogenic spectroscopy, including exciton-exciton annihilation. Surprisingly, we observe signatures of exciton exciton annihilation that indicate extremely long exciton migration.  This exciton migration is mostly coherent, punctuated with transient localization by the environment.

T.S. Bischof, J. R. Caram, A.P. Beyler M. G. Bawendi,”Extracting the average single-molecule photoluminescence lifetime from an solution of chromophores” Optics Letters 41 (20) pp. 4823-4826 (2016)

Quick Summary-  A neat method paper which that we can directly extract the biexciton emission dynamics from dilute solutions of chromophores, by resolving the lifetime of individual photons from two photon detection events.  Code is available upon request.

I. Coropceanu, A. Rosinelli, J.R. Caram F. S. Freyria, M. G. Bawendi, Variable Thickness CdSe/CdS Nanorods with Unity Fluorescence Quantum Efficiency.  ACS Nano,10 (3), 3295–3301 (2016)

Graduate Work

Thesis: “Dynamics of Electronic States Embedded in Complex Environments”  Published 2014.

H. Zheng,* J.R. Caram,*  P.D. Dahlberg, B.S. Rolczynski, S. Viswanathan, D.S. Dolzhnikov, A. Khadivi, D.V. Talapin, G.S. Engel. Dispersion-Free Continuum Two-Dimensional Electronic Spectrometer.  Applied Optics, 53, 19091917 (2014). *Co first authors

Quick Summary-  We developed a new all reflective two-dimensional spectrometer which uses angled mirrors to induce delays.  This approach lets you use extremely broadband continuum generated pulses for multidimensional spectroscopy, while avoiding dispersion.

J.R. Caram, H. Zheng, P.D. Dahlberg, B.S. Rolczynski, G.B. Griffin, D.S. Dolzhnikov, D.V. Talapin, G.S. Engel. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy. J. Chem .Phys., 140, 084701 (2014)

J.R. Caram, H. Zheng, P.D. Dahlberg,B.S. Rolczynski, G.B. Griffin, A.F. Fidler, D.S. Dolzhnikov, D.V. Talapin, G.S. Engel. Persistent Interexcitonic Quantum Coherence in CdSe Quantum Dots. J. Phys. Chem. Lett., 5, 196-204 (2014).

jz-2013-02336t_0005

Quick Summary– In 2DES, electronic quantum coherence manifestes as oscillations at at the energy difference between states.  We show that quantum coherence between the first two electronic excited state of CdSe QDs, indicating that quantum mechanical phase is maintained between electronic states for 100s of  femtoseconds.  In QD systems, a shared phonon bath correlates the phase of the carrier wavefunctions, maintaining coherence between states.

P.D. Dahlberg, A.F. Fidler, J.R. Caram, P.D. Long, G.S. Engel, “Energy Transfer Observed In Live Cells Using Two-Dimensional Electronic Spectroscopy.” J. Phys. Chem. Lett., 4, 3636-3640 (2013).

K.A. Fransted, J.R. Caram, D. Hayes, G.S. Engel, “Two-Dimensional Electronic Spectroscopy of Bacteriochlorophyll a in Solution: Elucidating the Coherence Dynamics of the FennaMatthews-Olson Complex Using its Chromophore as a Control.” J. Chem. Phys., 137, 125101 (2012).

J.R. Caram, A.F. Fidler, G.S. Engel, “Excited and Ground State Vibrational Dynamics Revealed by Two Dimensional Electronic Spectroscopy.” J. Chem. Phys., 137, 024507 (2012). 20 most read in 2012 and Editors Choice 2012

A.F. Fidler, J.R. Caram, D. Hayes, G.S. Engel, “Toward a Coherent Picture of Excitonic Coherence in the Fenna-Matthews-Olson Complex.” J. Phys. B, 45, 154013 (2012).

J.R. Caram, N.H.C. Lewis, A.F. Fidler, G.S. Engel , “Signatures of Correlated Excitonic Dynamics in Two Dimensional Spectroscopy of the Fenna-Matthew-Olson Photosynthetic Complex.” J. Chem. Phys., 136, 104505 (2012). Selected for Virtual Journal of Biological Physics

Quick Summary– The origin of long-lived observed coherent oscilliations in spectra of photosynthetic antenna proteins remains somewhat controversial. In this paper we apply a new signal processing tool, the linear prediction z-transform, to map coherent signals in 2D-spectra, according to decay rates, frequencies, and phase.  We discuss how observation of long-lived coherences can be explained by invoking a correlated environment (bath).

J.R. Caram, G.S. Engel , “Extracting Dynamics of Excitonic Coherences in Congested Spectra of Photosynthetic Light Harvesting Antenna Complexes.” Faraday Discuss., 153(1), 93-104 (2011).

G. Panitchayangkoon, D.V. Voronine, D. Abramavicius, J.R. Caram, N. Lewis, S. Mukamel, G.S. Engel, “Direct Evidence of Quantum Transport in Photosynthetic Light-harvesting Complexes.” Proc. Natl. Acad. Sci.,108(52), 20908-20912 (2011).

D. Hayes, G. Panitchayangkoon, K.A. Fransted, J.R. Caram, J. Wen, K.F. Freed, G.S. Engel, “Dynamics of Electronic Dephasing in the Fenna-Matthews-Olson Complex.” New J. Phys, 12, 065042 (2010).

G. Panitchayangkoon, D. Hayes, K.A. Fransted, J.R. Caram, E. Harel, J. Wen, R.E. Blankenship, G.S. Engel, “Long-Lived Quantum Coherence in Photosynthetic Complexes at Physiological Temperature.” Proc. Natl. Acad. Sci., 107:29, 12766-12770, (2010).

Leave a comment